
Stochastic Finance Protocol Whitepaper

January 17, 2025

Abstract

The Stochastic Finance Protocol (STFIN) transforms decentralized finance by providing a seamless platform for minting
and trading digital options. Leveraging the ERC-1155 token standard and the Uniswap exchange protocol, it allows users
to create and trade on-chain derivatives with concentrated liquidity across a predefined grid of strikes and maturities.
Collected fees are distributed to native STFIN token holders. By employing this advanced technology, Stochastic.Finance
empowers users to execute sophisticated trading strategies, access enhanced leverage, and manage risks effectively, all within
a decentralized financial ecosystem.

Introduction

In recent years, decentralized finance (DeFi) has
emerged as a rapidly evolving sector within the
blockchain ecosystem, offering a wide array of fi-
nancial instruments without intermediaries. Among
these innovations, decentralized derivatives, specifi-
cally options, have gained increasing traction as they
enable market participants to hedge, speculate, or
enhance yield in a permissionless manner.

Projects such as Hegic, Panoptics and Derive(Lyra)
have pioneered decentralized options protocols, each
contributing unique approaches to on-chain options
trading. Hegic, for instance, introduced a peer-to-
pool model with simple options mechanics, offering
users non-custodial, permissionless trading, but used
fixed Implied Volatility model can lead to mispric-
ing. Panoptic adopts a highly advanced approach to
perpetual options, offering significant potential but
also entails a high degree of complexity. Derive(Lyra)
has sought to optimize capital efficiency through its
automated market maker (AMM) model, which ad-
justs dynamically to market conditions, however has
regulatory and geographic restrictions.

Our project seeks to address these limitations by
introducing a novel approach:

• Permissionless Options: Options are ERC-1155
standard tokens that can be minted by liquid-
ity providers who supply USDC as collateral.
These options can be freely bought or sold by
traders through an AMM. American options can
be exercised at the holder’s discretion, while Eu-
ropean options are automatically executed upon
expiration.

• Deterministic Liquidity: A predefined grid of
strikes and maturities for each underlying asset
ensures a predictable distribution of liquidity,
effectively minimizing liquidity fragmentation.

• Underlying Data Feed: The option execution

logic leverages Chainlink data feeds to deter-
mine the price of underlying assets. This design
allows for future expansion beyond crypto pairs
like ETH/USDC to include other assets and even
traditional financial securities.

• Explicit User Roles: Each option comprises two
positions or so-called ‘leg‘: buyer and seller,
represented by the bitwise structure of the To-
kenID. During the minting event, the address
providing collateral gains ownership of both
positions. Either position can be exchanged
for USDC through the Stochastic Finance Swap
AMM. Holders of these option positions receive
a share of the collateral at the execution event,
determined by the realized payoff of their respec-
tive option leg.

• Swap AMM for ERC-1155: The protocol fea-
tures a fee-less AMM based on the Uniswap V2
architecture, allowing option positions to be ex-
changed for USDC. However, the protocol re-
mains agnostic to the AMM used, enabling users
to choose their preferred route for trading op-
tions tokens.

• Composability: All options for a given underly-
ing asset are tokenized under a single ERC-1155
contract. These tokens are interoperable with
other DeFi protocols, enhancing composability
and integration across the ecosystem.

This design improves liquidity efficiency while ad-
dressing the liquidity fragmentation that hinders
other decentralized options protocols. By combin-
ing the flexibility of ERC-1155 tokens with a tailored
AMM, our protocol aims to redefine decentralized
options trading, offering a scalable, efficient, and
user-friendly solution for trading or hedging risks.

As the DeFi space continues to evolve, we are com-
mitted to innovation, enhancing Stochastic Finance
to serve both novice and experienced traders in de-
centralized options markets.

Stochastic Finance Protocol

Figure 1: Stochastic Finance Protocol: Smart contract schema.

Stochastic Finance Protocol

The Stochastic Finance Protocol consists of several
smart contracts. Their interactions with each other
and external participants are illustrated in Figure 1.
The main components are:

• SF Options: The core ERC-1155 contract respon-
sible for issuing options, tracking participant
balances, facilitating option exercises, and dis-
tributing collateral to counterparties upon exer-
cise.

• SF Swap: A modified version of the Uniswap V2
AMM engine designed to enable the exchange
of option tokens for USDC with zero trading fees,
offering an enhanced user experience for trading
ERC-1155 fungible tokens.

• STFIN token: The native ERC-20 token of the
Stochastic Finance Protocol. All fees collected
from exercising options are transferred to this
contract and distributed equally among STFIN
token holders. The token is pre-minted with a
fixed supply of 1,000,000.

• CCIP Bridge: Since the native STFIN token re-
sides on the Ethereum mainnet, while SF Op-
tions and SF Swap operate on an L2 chains to
leverage significantly lower gas fees, a mecha-
nism is required to transfer fees from the L2
chains to STFIN. To achieve this, Chainlink’s
Cross-Chain Interoperability Protocol (CCIP)
will be utilized, incorporating two smart con-
tracts: SendPool and ReceivePool.

In conclusion, the Stochastic Finance Protocol is
a tightly integrated system of smart contracts de-
signed to facilitate options issuance, trading, and fee
distribution to tokenholders with minimal friction.

By utilizing established technologies like ERC-1155,
Uniswap V2 and Chainlink’s CCIP, the protocol en-
sures efficient trading operations as well as interoper-
ability across Ethereum mainnet and L2 chains while
maintaining transparency and reliability. Further, we
will proceed to discuss the details of each component
and their specific roles within the protocol.

Stochastic Finance Options

Options Parameters Grid and Token ID

One of innovative decisions introduced by Stochastic
Finance Protocol is predefined grid of strikes and ma-
turities for all possible underlying pairs. The grid is
defined by a tuple of parameters: strike and maturity.
The resulting option grid is shown in table 1.

Example Token IDs, American Call

Strike/Maturity Mi ...

...
Ki TokenID(Ki, Mi, A, C, D) ...
...

Table 1: TokenID Grid

The set of strikes Ki is generated by starting at
price equal 10 and then incrementing the price by
10% each step for 100 steps and deceasing starting
price for 10% for 50 steps, thus, producing a vector of
200 possible strikes. This will cover a price range for
most of actively traded assets like BTC, ETH, etc. The
generated strikes are rounded to first 4 significant
digits and transformed in exponential notation. Later
a strike is converted to a binary representation of 6
hexadecimal digits long or 24 bits, such that first 4

2 Stochastic.Finance Protocol

Stochastic Finance Protocol

digits are encoded by first 16 bits, exponent sign is
5th digit and exponent power is given by 6th digit.
Strikes are predefined and stored as uint24[] in the
smart-contract at the deployment.

The set of maturities Mi is defined on weekly basis,
each Friday of the week. Similarly to strikes, maturi-
ties are also encoded by 24 bits: a year by first 8 bits,
followed month and day by 8 bits as well. Maturi-
ties are predefined for 3 years ahead and stored as
uint24[] in the smart-contract at the deployment.

Figure 2: TokenID bitwise structure

Another 2 bytes are used to denote a type of op-
tion: Call or Put and a kind of option: European or
American. Final byte determines direction of the leg:
buyer’s or seller’s leg of the options.

Binding all options parameters yields a uint72
TokenID data structure as shown on figure 2.

On-chain Ledger Structure

Next major innovative step is to utilize ERC-1155
as a data structure[1] to store all TokenIDs gener-
ated from grid parameters permutations, as well as
their respective balances and counterparties. Storing
such a structure on-chain is a non-trivial task. To
achieve this, we use several nested built-in Solidity
mappings along with a specialized mapping data
structure called IterableMapping[2].

At the top level, there is a participants mapping
that associates an address with a Participant struct.
This struct contains a mapping from TokenId to a
Trades struct. The Trades struct, in turn, includes
an IterableMapping object that holds positions and
their respective counterparties.

Figure 3: Ledger structure after issuance of 1 option by address
A.

To better understand how the balance is managed,
let’s walk through an example usage of the protocol:
a user with Address A wants to mint 1 option on the
ETH/USDC pair with a specific strike.

First, the function issueOption is called with op-
tion parameters such as maturity, strike, type, kind,
and direction. It requests approval for transferFrom
from msg.sender of a stablecoin like USDC as collat-
eral. The value of the collateral corresponds to the

number of options being issued; for example, 1 USDC
of collateral equals 1 option on the ETH/USDC pair.

Afterward, the validity of the input is checked to
ensure the specified strike and maturity exist on the
Options Parameters Grid, and the respective TokenId
is determined. Once all checks are passed, two tokens
are minted:
• The buyer’s leg, i.e. long call option, associated
with the TokenId.
• The seller’s leg, i.e. short call option, associated
with the inverted direction TokenId.

At this point, the issuer owns both legs of the
option (buyer’s and seller’s sides) as illustrated on
figure 3. In the case of expiration or early execution,
the issuer would receive the entire initial collateral.
Address A can then sell or transfer one of the option
legs, just like any ERC-1155 type token. Minting
options is a mechanism for providing liquidity to the
Stochastic Finance Protocol.

Option Exercising and Payoff

Similar to traditional finance, European options are
executed at maturity, which occurs on a weekly basis
according to the grid. In contrast, holders of Amer-
ican option tokens can exercise their options at any
time. When an option is exercised, the protocol lever-
ages the Chainlink data feed to fetch the latest price
of the underlying asset.

Since Stochastic Finance uses collateralized options,
the payoff function differs from that of conventional
vanilla options[3]. It features a non-trivial structure
where the payoff represents a fraction of the supplied
collateral. The payoffs for the buyer’s and seller’s
legs are calculated as follows:

Payoffcall long = C
[

max(ST − K, 0)
max(ST − K, 0) + K

]

Payoffcall short = C
[

1 − max(ST − K, 0)
max(ST − K, 0) + K

]
where K is a strike, ST is a price of underlying pair
at option exercise, C - is a notional of collateral.

Let’s consider a simple example to understand frac-
tional payoffs. Address A holds 1 buyer’s leg of a
call option on ETH/USDC, while address B holds
1 seller’s leg of the same call option. The underly-
ing collateral, which will be distributed between the
buyer and the seller, is equal to 1 USDC. The distri-
bution works as follows:
1) If at the option’s exercise time, the price ST of
ETH/USDC is lower than the option’s strike price
K, then the buyer will not receive any fraction of the
collateral, and the seller will receive the full collateral
amount, minus SFP fees.
2) If the price ST of ETH/USDC is higher than the

Stochastic.Finance Protocol 3

Stochastic Finance Protocol

strike price K : The buyer will receive a fraction of
the collateral. For instance, if ST is twice as high as
K , the buyer’s fraction will be 50%, minus fees. If
ST is four times as high as K , the fraction increases
to 75%, and so on. This fractional payoff function is
distinct from the traditional vanilla call option payoff,
which is well-studied in academic literature.

Option Pricing

Correspondingly, the price of such fractional option
is also non-trivial. Assuming geometric Brownian
motion process for underlying asset ETH/USDC one
can derive the analytic expression for a price for such
option. The price of the option V is given by the
expected value of the discounted payoff under the
risk-neutral measure Q:

V = e−rTEQ

[
max(ST − K, 0)

max(ST − K, 0) + K

]
Substituting the explicit form of the payoff:

V = e−rTEQ

[
ST − K

ST
· I(ST > K)

]
where I(ST > K) is an indicator function that equals
1 when ST > K and 0 otherwise. Let’s express the
expected value in terms of the distribution of ST , the
stock price at time T under the risk-neutral measure:

V = e−rT
∫ ∞

K

ST − K
ST

fST (ST)dST

Under the Black-Scholes model, the stock price ST is
log-normally distributed:

ST = S0 exp
((

r − σ2

2

)
T + σWT

)
where WT is a standard Brownian motion under the
risk-neutral measure and PDF of ST is:

f (ST) =
1

STσ
√

2πT
exp

−

(
ln

(
ST
S0

)
−

(
r − σ2

2

)
T
)2

2σ2T


We can now rewrite the option price as:

V = e−rT
∫ ∞

K

(
1 − K

ST

)
fST (ST)dST

This can be split into two integrals:

V = e−rT
[∫ ∞

K
fST (ST)dST − K

∫ ∞

K

1
ST

fST (ST)dST

]
The first integral ∫ ∞

K
fST (ST)dST

is simply the probability PQ(ST > K), which is given

by Φ(d2) where: d2 =
ln
(

S0
K

)
+
(

r− σ2
2

)
T

σ
√

T
The second integral can be expressed as:

1
σ
√

2πT

∫ ∞

K

1
S2

T
exp

−

(
ln

(
ST
S0

)
−

(
r − σ2

2

)
T
)2

2σ2T

 dST

Fortunatly such integral has a closed-form solution.
The final formula for long and short call option prices
look as following:

Clong call = Φ(d2) exp−rT − K
S0

(1−Φ(η
√

2)) exp−(2r−σ2)T

Cshort call = Φ(−d2) exp−rT +
K
S0

(1−Φ(η
√

2)) exp−(2r−σ2)T

where:

ζ =
3
√

2Tσ2 − 23/2Tr + 23/2 ln
(

K
S0

)
4
√

Tσ

Using the same assumptions one can derive the
price of both directions of a put option:

Plong put = Φ(−d2) exp−rT −S0

K
(1 − Φ(η

√
2))

Pshort put = Φ(d2) exp−rT +
S0

K
(1 − Φ(η

√
2))

where:

η =
T
(
σ2 + 2r

)
− 2 ln

(
K
S0

)
2

3
2
√

T σ

As usual, the analytic expression of prices may
appear intimidating, but they can be validated using
a simple Monte Carlo simulation, which produces
the same results as shown in the listing 1.

Figure 4: Option prices depending on price os the underlying
for K=100, T=1

4 Stochastic.Finance Protocol

Stochastic Finance Protocol

Price dependence on underlying ST for all options
is shown on figure 4. Here similar to vanila options
the price quickly fades as options goes out-of-money.
However, asymptotic behavior of the price in in-the-
money region is different: fractional options do not
exhibit linear behavior of vanila options when at
ST >> K option price is almost equal to the price of
underlying. Instead, as ST >> K for long calls the
price approaches 1, meaning that the owner of those
options would get 100% collateral.

1 import numpy as np
2 from scipy . s t a t s import norm
3 from scipy . s p e c i a l import e r f c
4
5 def opt ion_pr ice (S0 , K, r , T , sigma) :
6 d2 = (np . log (S0 / K) + (r − 0 . 5 * sigma * * 2) * T) / (sigma * np . s q r t (T))
7 z e t t a = (3 * np . s q r t (2) * T * sigma * * 2 − 2 * * (3 / 2) * T * r + 2 * * (3 / 2)

* np . log (K / S0)) /(4 * np . s q r t (T) * sigma)
8 opt ion_pr ice = np . exp(− r * T) * (norm . cdf (d2)) − K / S0 * 0 . 5 * e r f c (

z e t t a) *np . exp (sigma * * 2 * T) *np . exp (−2* r * T)
9 re turn opt ion_pr ice

10
11 def monte_car lo_price (S0 , K, r , T , sigma , num_simulations =100000000) :
12 Z = np . random . standard_normal (num_simulations)
13 ST = S0 * np . exp ((r − 0 . 5 * sigma * * 2) *T + sigma *np . s q r t (T) *Z)
14 payoff = np . maximum(ST − K, 0) / (np . maximum(ST − K, 0) + K)
15 return np . exp(− r *T) * np . mean(payoff)
16
17 # Test parameters
18 S = 100 # Current s tock p r i c e
19 K = 100 # S t r i k e p r i c e
20 r = 0 . 0 5 # Risk − f r e e r a t e
21 T = 1 # Time to maturity (in years)
22 sigma = 0 . 2 5 # V o l a t i l i t y
23
24 # Ca l c u l a te p r i c e s
25 a n a l y t i c a l = opt ion_pr ice (S , K, r , T , sigma)
26 mc = monte_car lo_price (S , K, r , T , sigma)
27
28 p r i n t (f " A n a l y t i c a l p r i c e : { a n a l y t i c a l : . 6 f } ")
29 p r i n t (f " Monte Carlo p r i c e : {mc : . 6 f } ")
30 p r i n t (f " D i f f e r e n c e : { abs (a n a l y t i c a l − mc) : . 6 f } ")
31
32 >>> A n a l y t i c a l p r i c e : 0 .0893656
33 >>> Monte Carlo p r i c e : 0 .089356
34 >>> D i f f e r e n c e : 0 .000000

Listing 1: Analytic solution vs Monte-Carlo simulations results.

Analytic formulas for pricing are extremely useful
when constructing more complex option strategies,
such as straddles, spreads, butterflies, and others.
These expressions will later be integrated into the
Strategy Builder UI, enabling users to forecast payoffs
for any custom option strategy.

Figure 5: Example Long Straddle strategy, consistiing of long
call at K=100 and long put at K=150

Stochastic Finance Swap

Users who are only interested in purchasing options
or trading can buy or sell them on any DEX that
supports the ERC-1155 token standard.

However, to provide a better user experience for
traders, we will be launching a specialized DEX
based on the Uniswap V2 [4] engine with zero fees on
swap operations. Feeless swaps will further enhance
trading liquidity and increase asset turnover.

This section offers detailed explanations of the de-
sign solutions underlying the primary Stochastic Fi-
nance Swap contracts (hereinafter referred to as SF-
Swap). Here, we provide a brief overview of the
contract functions, including support for arbitrary
pairs between ERC20 (stablecoin) and ERC1155 (trad-
ing coin), an AMM mechanism that allows traders to
monitor pair liquidity and collect price data, as well
as “flash swaps,” which enable traders to buy or sell
options created on the Stochastic Finance dApp.

SFSwap enables liquidity providers to create paired
contracts between the stablecoin (USDC) and any
fungible token defined within an ERC-1155 contract.
The numerous possible pairs between USDC and
ERC-1155 tokens can make identifying the optimal
trading path for a specific option or pair challenging.
However, the Stochastic Finance dApp provides a
user-friendly interface to facilitate such trades effi-
ciently.

The SFSwap contract builds upon and enhances
the core logic of Uniswap V2, incorporating its best
features. Additionally, we have introduced several
significant improvements and features focused on
enhancing security.

Below is a list of key differences and a brief de-
scription of the solutions we implemented:

• Updated Solidity Version: While SFSwap inher-
its many foundational elements from Uniswap,
we use Solidity version 0.8.24 to minimize the
risk of vulnerabilities present in earlier versions
of the language. For more detailed information
about changes in Solidity versions, refer to the
Release Announcements section on the Solidity
project’s website [5].

• Secure Mathematics: Throughout development,
we prioritized the use of secure mathematical
operations to mitigate potential errors. We relied
heavily on Math and SafeCast technologies from
OpenZeppelin version 5 to ensure accuracy and
prevent issues such as overflows and underflows.
Although Solidity now includes built-in protec-
tions against overflow and underflow, we con-
ducted additional checks using well-established
tools to further enhance security.

Stochastic.Finance Protocol 5

Stochastic Finance Protocol

• Reentrancy Protection: Special attention was
given to guarding against reentrancy attacks
to ensure the safety of users’ tokens during
transactions. To achieve this, we avoided us-
ing custom-written modifiers and instead imple-
mented OpenZeppelin’s ReentrancyGuard from
version 5, a robust and tested solution for pre-
venting such vulnerabilities [6].

These represent just a few of the potential vulner-
abilities we identified and addressed during devel-
opment. We have taken every possible measure to
ensure the security and reliability of our platform,
prioritizing the safety of our users at every step.

We will discuss them in details in subsequent sec-
tions.

Price Oracle

In the absence of transactions, the marginal price on
SFSwap can be calculated as the ratio of the reserves
of asset a to the reserves of asset b:

pt =
ra

t

rb
t

SFSwap extends the basic functionality of this price
oracle by measuring and registering the price before
the first transaction of each block (or equivalently, af-
ter the last transaction of the previous block). This de-
sign significantly increases the difficulty of price ma-
nipulation compared to manipulating prices within
a block.

For instance, if an attacker attempts to manipulate
the price at the end of a block, another arbitrageur
can immediately send a counteracting transaction
within the same block. While a miner or an attacker
with sufficient resources could manipulate the price
at the block’s end, they would gain little advantage
in arbitraging if they are not mining the subsequent
block.

To enhance security, SFSwap accumulates price
data by tracking the cumulative volume of prices at
the beginning of each block where the contract is
interacted with. Each price is weighted based on the
time elapsed since the last block update, as deter-
mined by the block’s timestamp. Consequently, the
cumulative cost at any given time (after an update)
equals the sum of spot prices for every second in the
contract’s history:

at =
t

∑
i=1

pi

To compute the time-weighted average price
TWAP between two points, t1 and t2, an external
user can retrieve the cumulative value at t1, retrieve

it again at t2, subtract the initial value from the latter,
and divide the result by the elapsed time in seconds:

TWAPt1,t2 =
at2 − at1

t2 − t1

It is important to note that the contract does
not store historical values for this cumulative price.
Therefore, the user must query the contract at the
start of the desired period to record the initial value
and again at the end of the period to complete the
calculation:

pt1,t2 =
∑t2

i=t1
pi

t2 − t1
=

∑t2
i=1 pi − ∑t1

i=1 pi

t2 − t1
=

at2 − at1

t2 − t1

Precision

Due to Solidity’s lack of first-class support for non-
integer numeric data types, SFSwap adopts a simple
binary fixed-point format to encode and manipulate
prices. Specifically, prices at any given moment are
represented as UQ112.112 numbers. This format
allocates 112 fractional bits of precision on either side
of the decimal point and does not include a sign.
These numbers have a range of [0, 2112 − 1] 1 and a
precision of 1

2112 .
The UQ112.112 format was chosen for pragmatic

reasons. Since these numbers can be stored in a single
uint224, this leaves 32 bits free in a 256-bit storage
slot. Additionally, reserves, each stored as a uint112,
also leave 32 bits free in a (packed) 256-bit storage
slot. These free bits are utilized for the accumulation
process described earlier. Specifically, reserves are
stored alongside the timestamp of the most recent
block with at least one trade. This timestamp is
modded by 232 to fit within the remaining 32 bits.

Although the price at any given moment (stored
as a UQ112.112 number) fits comfortably within 224
bits, the cumulative price over an interval may ex-
ceed this limit. The additional 32 bits in the storage
slots for the accumulated prices of A/B and B/A
are reserved to capture overflow bits resulting from
repeated summations of prices.

One potential drawback of this approach is that
32 bits are insufficient to store timestamp values that
are guaranteed not to overflow. The Unix timestamp
will overflow a uint32 on February 7, 2106. To ensure
continued functionality beyond this date—and every
subsequent interval of 232 - 1 seconds (approximately
136 years)—oracles must check prices at least once
per interval.

1 The theoretical upper bound of 2112 − 1
2112 does not apply in this

setting, as UQ112.112 numbers in Uniswap are always generated
from the ratio of two uint112s. The largest such ratio is 2112−1

1 =
2112 − 1

6 Stochastic.Finance Protocol

Stochastic Finance Protocol

The system is designed to be overflow-safe. The
core method of accumulation and timestamp mod-
ding ensures that trades spanning overflow intervals
are correctly accounted for. This requires oracles to
use straightforward overflow arithmetic to compute
deltas accurately, allowing the system to maintain
precision and functionality over extended periods.

Flash Swaps

SFSwap allows users to receive and utilize an as-
set without prepayment, as long as the payment is
completed within the same transaction. The swap
function triggers the execution of an optional callback
contract specified by the user, which occurs between
the transfer of tokens requested by the user and the
enforcement of the invariant.

After the callback is executed, the contract verifies
the updated balances to ensure that the invariant is
maintained, factoring in the fees applied to the de-
posited amounts. If the contract does not contain
sufficient funds to satisfy the invariant, the transac-
tion is reverted.

Fee to liquidity providers

Our protocol assumes a fee for liquidity providers
in the amount of 1 % of each transaction, which
can be earned on each pair selected by the provider.
Also, provided that when an option is issued, each
provider receives two legs (buyer and seller side),
them can be provided as liquidity assets to either
one or both pools. Reward is distributed among
providers depending on their contribution to a partic-
ular pool in accordance with their share. The rewards
from each transaction are immediately transferred
back to the pool, which allows to maintain a more
stable price of assets and reduce the price impact.
Accumulated fees can be obtained at any time by
burning off liquidity tokens by any of the providers.

Contract Architecture

A core focus of SFSwap’s development is minimizing
complexity while enhancing the security of the pri-
mary pair contract, which holds the assets of liquidity
providers.

Errors in this contract could have severe conse-
quences, potentially leading to the theft or locking of
liquidity. Therefore, the most critical consideration
when evaluating the security of this fundamental
contract is whether it adequately safeguards liquidity
providers against the loss or immobilization of their
assets.

Additional functions aimed at supporting or pro-
tecting traders, beyond the core functionality of ex-

changing one asset for another within a pool, can be
implemented in a router contract. In fact, even some
exchange-related functions can be delegated to the
router contract to reduce the complexity of the pair
contract.

As previously mentioned, SFSwap maintains the
last recorded balance of each asset to prevent the
manipulative exploitation of its oracle mechanism.

Initialization of Liquidity Token Supply

When a new liquidity provider contributes tokens to
an existing SFSwap pair, shares are issued. The num-
ber of shares issued is determined by the geometric
average of the amounts deposited into the liquidity
pool.

The formula for calculating the number of shares
is as follows:

sminted =
√

xdeposited · ydeposited

where:
xdeposited is the amount of token x deposited into

the liquidity pool; ydeposited is the amount of token
y deposited into the liquidity pool. This formula en-
sures that the value of a liquidity pool share remains
stable, regardless of the initial ratio of the deposited
assets.

For example, if the current value of 1 ABC is 100
XYZ, and an initial deposit of 2 ABC and 200 XYZ is
made (maintaining a 1:100 ratio), the depositor will
receive:

√
2 · 200 = 20 shares

The value of these shares represents 2 ABC and
200 XYZ, plus any accumulated commissions.

This formula guarantees that the value of a liquid-
ity pool share will never fall below the geometric
average of the pool’s reserves 2. However, the value
of a share may increase over time due to “donations”
or excess funds contributed to the liquidity pool. The-
oretically, this could result in a situation where the
minimum number of pool shares (1e-18) becomes
disproportionately valuable, making it impractical
for small liquidity providers to contribute liquidity.

To mitigate this, SFSwap burns the first 1e-15
(0.0000000000000001) of the total pool resources cre-
ated (1,000 times the minimum value of total pool
resources). These burned resources are sent to an

2 This also reduces the likelihood of rounding errors, since the
number of bits in the quantity of shares will be approximately
the mean of the number of bits in the quantity of asset X in the
reserves, and the number of bits in the quantity of asset Y in the
reserves:

log2
√

x · y =
log2x + log2y

2

Stochastic.Finance Protocol 7

Stochastic Finance Protocol

address with a zero balance, ensuring they are per-
manently removed, rather than returned to the mint.
This adjustment has a negligible cost for almost any
token pair but significantly increases the difficulty of
exploiting this scenario.

For instance, to raise the value of a liquidity pool
share to $100, an attacker would need to deposit
$100,000 into the pool, which would be permanently
locked as liquid funds.

Deterministic Pair Addresses

With advancements in the Solidity language and the
potential vulnerabilities associated with the inline,
custom use of the CREATE and CREATE2 opcodes
in Uniswap V2, we decided to avoid these methods.
These vulnerabilities could result in user funds being
at risk if not implemented correctly.

Despite this, the need for cloning contracts per-
sisted. To optimize gas usage, we adopted the
cloneDeterministic proxy technology from OpenZep-
pelin version 5 [7]. This technology creates and re-
turns the address of a clone that replicates the behav-
ior of the original implementation.

The cloneDeterministic function utilizes the CRE-
ATE2 opcode along with a salt value to deploy deter-
ministic clones. Importantly, the same implementa-
tion and salt value cannot be reused, as deploying a
clone at an address already in use is not allowed.

This approach provides a more standardized and
robust solution, offering greater protection against
potential attacks.

As mentioned earlier, the development of SFSwap
placed significant emphasis on addressing security
concerns and leveraging advanced security technolo-
gies in Solidity.

Pair timing

Two hours before maturity, each of the pools is closed
for trading and/or adding liquidity to increase the
security of assets located inside the pool. The regu-
lation of such a process is provided directly by the
blockchain by calculating the block to maturity. Asset
withdrawal is still available to any pool participant.

Pair disband before exercise

After the pool has been "frozen" for the deposit and
exchange of assets. After maturity occurs, the option
is being exercised. At the time of the exercising, all
assets are returned to the providers in accordance
with their shares. Thus, in order to avoid any tricky
situations, the token representing a specific pair must
be held by the provider of this pair and should not
be transferred to third parties. In a normal situation,

a token representing liquidity will be extracted from
your account and transferred to burn, after which
you will receive a payment of both parts of your asset.
And after that, an exercise will be performed.

sync() and skim()

To mitigate the risk of custom token implementa-
tions updating the balance of paired contracts, and
to more gracefully handle tokens with a total supply
exceeding 2112, SFSwap offers two fallback mecha-
nisms: sync() and skim() similar to UniSwap v2
[4].
sync() serves as a recovery method when a to-

ken reduces the balance of its paired contract asyn-
chronously. In such a scenario, trades may re-
ceive suboptimal exchange rates, and if no liquidity
providers are available to rectify the situation, the
paired contract may become stalled. sync() sets the
contract’s reserves to their current values, facilitating
a relatively smooth resolution.
skim() acts as a contingency plan in cases where

excess tokens are transferred to a paired contract,
potentially exceeding the capacity of the two uint128
slots for reserves and potentially causing trade fail-
ures. skim() allows users to withdraw any difference
between the current balance and 2112 − 1 if it exceeds
zero.

Divergence (impermanent) loss

When providing liquidity, the provider needs to un-
derstand the risks and advantages that it carries as
a provider in terms of holding assets in the pool.
The concept of divergence loss covers a situation in
which, when the price of a trading asset changes, the
token holder incurs losses in relation to the situation
if he simply held such assets. There are many high-
quality examples in the community representing the
classic situation where there are two tokens in the
pool, and when the price changes, we get a loss for
the provider. In general, such a loss can be described
by the following formula [8]:

divergenceLoss =
1 + r − 2 ·

√
r

1 + r
or this approach:

divergenceLoss =
2 ·

√
r

(1 + r)−1

where r - price ratio: r = p′
p

r - price ratio,
p′ - current price
p - initial price
and we can imagine the losses for the provider as

follows:

8 Stochastic.Finance Protocol

Stochastic Finance Protocol

Figure 6: Example of losses for liquidity providers due to price
variation[9]

or in numbers:
Price change to loss relative to HODL

• 1.25x cnange turns in a 0.6% loss
• 1.50x cnange turns in a 2.0% loss
• 1.75x cnange turns in a 3.8% loss
• 2x cnange turns in a 5.7% loss
• 3x cnange turns in a 13.4% loss
• 4x cnange turns in a 20.0% loss
• 5x cnange turns in a 25.5% loss

However, in this explanation, we still did not touch
in any way on the reward that will be accumulated
by the provider with each transaction. Taking it into
account, we will get such a result that gradually, as
we go through the transactions with the assets of
each of the liquidity holders, his remuneration will
accumulate inside the pool and as a result at some
point of time, the remuneration will cover the loss of
value.

So we can consider two examples:

1. Negative P&L example. Here we will take big
price impact due to transactions.

1. Initial option price: 0.5 USDC
2. The final option price after all completed trans-

actions ≈ 0.953 USDC
3. Number of transactions: 200
4. Initial liquidity supply: 1 500 USDC
5. Number of providers: 2
6. Share of each provider: 50 %

Further, after performing calculations, each of
providers will receive:

Divergence loss ≈ −0.050
Accumulated fees ≈ 19.661 UDSC
Losses relative to simple asset retention:
1400.016− 1452.690 ≈ −52.674, taking into account

the fee overlap in 1%

2. Positive P&L example Here, if we take all the
same initial conditions, however, change the initial
option price:

1. Initial option price: 1 USDC
2. The final option price after all completed trans-

actions ≈ 0.996 USDC
3. Number of transactions: 200
4. Initial liquidity supply: 2 000 USDC
5. Number of providers: 2
6. Share of each provider: 50 %

Divirgence loss = −0.000002246287445717421
Accumulated fees ≈ 19.909 USDC
Gains relative to simple asset retention:
2015.674 − 1995.770 ≈ 19.904, taking into account

the fee overlap of 1%
Thus, we can understand that with an increase in

the number of transactions, more and more fees will
flow into the provider’s account and cover an increas-
ing change in value, as well as an increase in the
number of assets provided will keep the value more
in place, which will also reduce the impermanent
loss.

Last but not least, we can say that the very first
thing is that all these risks may come true only for
a situation where the provider uses only one leg
of its option in the liquidity pool. Thanks to the
capabilities of our service, the entire price impact
can be levelled if both legs are provided with liquid-
ity at once, in which case option prices will change
counter-directionally and the provider will receive
pure earnings due to accumulated fee.

Pair name construction

When creating our service, in order to improve the
user experience, we adopt a unique method of nam-
ing pairs (pools) based on generally accepted meth-
ods and international practices. We always take into
account the composition of the name:

1. Underlying assets
2. Option type: American or European
3. Option kind: Call or Put
4. Direction: Buy or Sell
5. Maturity
6. Strike

The most understandable example will be:
ETH250117ACB88200000

Here:

1. Underlying assets:USDC and Option
2. Option type: American
3. Option kind: Call
4. Direction: Buy
5. Maturity: 17.01.2025
6. Strike: 882.0

For even more easy understanding users may con-
sider take a look to our schema:

Stochastic.Finance Protocol 9

Stochastic Finance Protocol

Figure 7: Example of how to pools are named

STFIN Token

Tokenomics

STFIN is the native token of the Stochastic Finance
Protocol, designed to distribute all fees collected from
exercising options. While trading options via SF
Swap incurs no fees apart from gas costs, exercising
options carries a 0.5% fee on the collateral. This fee
is evenly split between the buyer and the seller upon
exercise.

To estimate the potential annual cash flow dis-
tributable to STFIN tokenholders, we consider typ-
ical option dynamics. Observing trends from other
option platforms, most liquid options tend to have
weekly maturities. For simplicity, we assume that
the Total Value Locked (TVL) is fully concentrated in
weekly options. As these options roll over each week,
0.5% of the TVL is converted to fees and distributed
to STFIN tokenholders. Over a year, this amounts to
0.5% × 52 = 26% of TVL being collected as fees, all
of which are distributed to tokenholders.

To project the future TVL of the protocol, we em-
ploy a statistical approach. Using data from de-
fillama.com as of December 25, 2024, which encom-
passes TVL from 3,081 DeFi projects, we analyze the
distribution of TVL and calculate quantiles to sim-
ulate different scenarios for the protocol’s TVL. By
combining these projections with the annual fee rate,
we derive the protocol’s potential annual cash flow
and assess its future valuation. Table 2 presents the
possible cash-flow outcomes based on these projec-
tions.

These results indicate that even if Stochas-
tic.Finance achieves a most common, i.e. median
TVL across the DeFi industry, it would still generate
$1.5 million in annual cash flow for its tokenholders.

We plan to distribute STFIN tokens using a stan-
dard allocation model commonly seen in the DeFi
space:

• Team and Founders: 30%
• Investors: 20%
• Advisors: 5%
• Marketing: 10%
• Public Sale: 10%
• Community Fund: 20%
• Airdrop: 0.5%

TVL 25% TVL 50% TVL 75% TVL 90%

fee 1% $146,546 $3,124,815 $41,601,760 $439,265,200
fee 0.5% $73,273 $1,562,407 $20,800,880 $219,632,600
fee 0.3% $43,964 $937,444 $12,480,530 $131,779,600
fee 0.2% $29,309 $624,963 $8,320,352 $87,853,050

Table 2: Annual cash flow for variaous TVL scenarios and fees.
Baseline case with 0.5% fees is highlighted.

This includes allocations for the team, investors,
community incentives and ecosystem growth to en-
sure long-term sustainability. By following this well-
established approach, we aim to balance rewarding
early contributors and investors while fostering com-
munity participation and providing resources for
future development and innovation.

CCIP Bridge

Since the cash flow-generating contract, SF Options,
is deployed on L2 chains to benefit from signifi-
cantly lower gas fees, and the STFIN token resides
on Ethereum mainnet, a mechanism is needed to
transfer collected fees from L2 to Ethereum. For this
purpose, we have chosen USDC, issued by Circle,
as the collateral. USDC is currently the only stable-
coin with a clear protocol for cross-chain transactions
through its Cross-Chain Transfer Protocol (CCTP).
Specifically, we will utilize Chainlink’s version of
CCTP so-called Cross Chain Interoperability Protocol
(CCIP) for seamless interoperability.

The core idea of this protocol is that USDC is
burned on the source chain with associated parame-
ters, including the destination address, target chain,
and an ‘attestation‘ — a proof that USDC was burned
for the intended cross-chain operation. On the tar-
get chain, Ethereum in our case, USDC is minted by
presenting this ‘attestation‘.

This process requires the deployment of two smart
contracts: SendPool on the source chain to handle
USDC burning and ReceivePool on the target chain
to mint USDC and forward it to the STFIN contract.
This setup ensures efficient and secure cross-chain
fee transfers, supporting the protocol’s decentralized
operations.

References

[1] OpenZeppelin. url: https://docs.openzeppe
lin.com/contracts/5.x/erc1155.

[2] Solidity Team. url: https://docs.solidityl
ang.org/en/latest/types.html#iterable-
mappings.

10 Stochastic.Finance Protocol

https://docs.openzeppelin.com/contracts/5.x/erc1155
https://docs.openzeppelin.com/contracts/5.x/erc1155
https://docs.soliditylang.org/en/latest/types.html#iterable-mappings
https://docs.soliditylang.org/en/latest/types.html#iterable-mappings
https://docs.soliditylang.org/en/latest/types.html#iterable-mappings

Stochastic Finance Protocol

[3] J. Hull. Options, Futures and Other Derivatives.
Eastern economy edition. Pearson/Prentice Hall,
2009. isbn: 9780136015864. url: https://books.
google.de/books?id=sEmQZoHoJCcC.

[4] Uniswap Labs, Adams, H. and Zinsmeister N.,
and Robinson D. Uniswap v2 Core. 2020.

[5] Solidity Team. url: https : / / soliditylang .
org/blog/2024/01/26/solidity- 0.8.24-
release-announcement/.

[6] OpenZeppelin. url: https://docs.openzeppe
lin.com/contracts/5.x/api/utils.

[7] OpenZeppelin. url: https://docs.openzeppe
lin.com/contracts/5.x/api/proxy.

[8] Harshit Verma. url: https://blog.blockmag
nates.com/understanding-divergence-loss-
in-uniswap-a-step-by-step-guide-3c8474f
0bafa.

[9] Pintail. url: https://pintail.medium.com/
uniswap-a-good-deal-for-liquidity-provi
ders-104c0b6816f2.

Stochastic.Finance Protocol 11

https://books.google.de/books?id=sEmQZoHoJCcC
https://books.google.de/books?id=sEmQZoHoJCcC
https://soliditylang.org/blog/2024/01/26/solidity-0.8.24-release-announcement/
https://soliditylang.org/blog/2024/01/26/solidity-0.8.24-release-announcement/
https://soliditylang.org/blog/2024/01/26/solidity-0.8.24-release-announcement/
https://docs.openzeppelin.com/contracts/5.x/api/utils
https://docs.openzeppelin.com/contracts/5.x/api/utils
https://docs.openzeppelin.com/contracts/5.x/api/proxy
https://docs.openzeppelin.com/contracts/5.x/api/proxy
https://blog.blockmagnates.com/understanding-divergence-loss-in-uniswap-a-step-by-step-guide-3c8474f0bafa
https://blog.blockmagnates.com/understanding-divergence-loss-in-uniswap-a-step-by-step-guide-3c8474f0bafa
https://blog.blockmagnates.com/understanding-divergence-loss-in-uniswap-a-step-by-step-guide-3c8474f0bafa
https://blog.blockmagnates.com/understanding-divergence-loss-in-uniswap-a-step-by-step-guide-3c8474f0bafa
https://pintail.medium.com/uniswap-a-good-deal-for-liquidity-providers-104c0b6816f2
https://pintail.medium.com/uniswap-a-good-deal-for-liquidity-providers-104c0b6816f2
https://pintail.medium.com/uniswap-a-good-deal-for-liquidity-providers-104c0b6816f2

	Introduction
	Stochastic Finance Protocol
	Stochastic Finance Options
	Options Parameters Grid and Token ID
	On-chain Ledger Structure
	Option Exercising and Payoff
	Option Pricing

	Stochastic Finance Swap
	Price Oracle
	Precision
	Flash Swaps
	Fee to liquidity providers
	Contract Architecture
	Initialization of Liquidity Token Supply
	Deterministic Pair Addresses
	Pair timing
	Pair disband before exercise
	sync() and skim()
	Divergence (impermanent) loss
	1. Negative P&L example.
	2. Positive P&L example

	Pair name construction

	STFIN Token
	Tokenomics
	CCIP Bridge

